Structural characterization of the closed conformation of mouse guanylate kinase.
نویسندگان
چکیده
Guanylate kinase (GMPK) is a nucleoside monophosphate kinase that catalyzes the reversible phosphoryl transfer from ATP to GMP to yield ADP and GDP. In addition to phosphorylating GMP, antiviral prodrugs such as acyclovir, ganciclovir, and carbovir and anticancer prodrugs such as the thiopurines are dependent on GMPK for their activation. Hence, structural information on mammalian GMPK could play a role in the design of improved antiviral and antineoplastic agents. Here we present the structure of the mouse enzyme in an abortive complex with the nucleotides ADP and GMP, refined at 2.1 A resolution with a final crystallographic R factor of 0.19 (R(free) = 0.23). Guanylate kinase is a member of the nucleoside monophosphate (NMP) kinase family, a family of enzymes that despite having a low primary structure identity share a similar fold, which consists of three structurally distinct regions termed the CORE, LID, and NMP-binding regions. Previous studies on the yeast enzyme have shown that these parts move as rigid bodies upon substrate binding. It has been proposed that consecutive binding of substrates leads to "closing" of the active site bringing the NMP-binding and LID regions closer to each other and to the CORE region. Our structure, which is the first of any guanylate kinase with both substrates bound, supports this hypothesis. It also reveals the binding site of ATP and implicates arginines 44, 137, and 148 (in addition to the invariant P-loop lysine) as candidates for catalyzing the chemical step of the phosphoryl transfer.
منابع مشابه
Enzyme closure and nucleotide binding structurally lock guanylate kinase.
We investigate the conformational dynamics and mechanical properties of guanylate kinase (GK) using a multiscale approach combining high-resolution atomistic molecular dynamics and low-resolution Brownian dynamics simulations. The GK enzyme is subject to large conformational changes, leading from an open to a closed form, which are further influenced by the presence of nucleotides. As suggested...
متن کاملMechanistic insight into the functional transition of the enzyme guanylate kinase induced by a single mutation
Dramatic functional changes of enzyme usually require scores of alterations in amino acid sequence. However, in the case of guanylate kinase (GK), the functional novelty is induced by a single (S→P) mutation, leading to the functional transition of the enzyme from a phosphoryl transfer kinase into a phosphorprotein interaction domain. Here, by using molecular dynamic (MD) and metadynamics simul...
متن کاملSTRUCTURAL ANALYSIS OF CYCLOSPORIN-A BY RAMAN TECHNIQUE
The Raman spectrum of cyclosporin-A has been recorded in the solid phase. The conformation of the molecule has been discussed on the basis of Raman data. It has been concluded that in agreement with X-ray data, cyclosporin-A molecule has an antiparallel P- pleated sheet conformation. It may have some reverse P- turn structure in what has been assigned to a random coil conformation.
متن کاملElectroacupuncture attenuates chronic fibromyalgia pain through the phosphorylated phosphoinositide 3-kinase signaling pathway in the mouse brain
Objective(s): Fibromyalgia (FM) is a central nervous system disorder characterized by widespread mechanical hyperalgesia due to unknown mechanisms. Several inflammatory mediators, such as interleukin-1 (IL-1), IL-6, IL-8, and tumor necrosis factor, are increased in the serum of FM patients. Although medications including pregabalin, duloxetine, and milnacipran are used...
متن کاملA structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation.
Heme nitric oxide/oxygen (H-NOX) proteins are found in eukaryotes where they are typically part of a larger protein such as soluble guanylate cyclase and in prokaryotes where they are often found in operons with a histidine kinase, suggesting that H-NOX proteins serve as sensors for NO and O(2) in signaling pathways. The Fe(II)-NO complex of the H-NOX protein from Shewanella oneidensis inhibits...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 33 شماره
صفحات -
تاریخ انتشار 2002